Ethical Student Hackers

Intro to Assembly

The Legal Bit

The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

Code of Conduct

Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

If you have any doubts or need anything clarified, please ask a member of the committee.
Breaching the Code of Conduct = immediate ejection and further consequences.

Code of Conduct can be found at

What is assembly?

Assembly is a human readable version of machine-code that is as close as you can get to the
“bare metal”
Every processor architecture has its own assembly language — some common ones:

o x86 (The one we are learning today)

o ARM (In mobile devices and the new Macbooks)

o RISC-V (A neat, newish open-source architecture)
Though different architectures have different instructions and registers, many of the
concepts are the same
If you'd like to see a very basic (and quite fictional) assembly language, check out !

https://www.zachtronics.com/tis-100/

Why is it useful to know assembly?

e Low level development
o Atthe level of operating systems and bootloaders, this is sometimes the only language
available!
o These layers of the stack can often hide hard-to-find security vulnerabilities!
e Near-direct translation of machine-code
o Binary programs can be disassembled and reverse-engineered
e Anunderstanding at this level helps understand concepts in other languages
o Systems-programming languages like C/C++ and Rust have some overlap
o Higher level languages like Python are much farther from this level though

mov
cmp
sete
movzbq
test
jnz
mov
mov
imul
cmp
setle
movzbq

call
mov
ret

print_bool:

false:
true:

cmp
je
mov

‘jnp

mov

mov
call
ret
.data
.string
.string

$2, %rdi
$3, %rdi
%dil

%dil, %rdi
%rdi, %rdi
.T2

S$4, %rbx
$2, %rcx
$3, %rcx
%rcx, %rbx
%b1l

%bl, %rdi

print_bool
$0, %rax

$0, %rdi
.Lfalse
Strue, %rdi
.Lprint

Sfalse, %rdi
$0, %rax
printf

"false\n"
"true\n"

Some basic syntax

asm_strlen:
; String passed in rdi.
; Check for null
cmp rdi, @
je .zero
mov rsi, rdi

.align:

; Check low 3 bits of current address.

test sil, 7
jz .done_aligning

cmp byte[rsi], @
je .done

inc rsi

jmp .align

.done_aligning:
mov r8, @x7FIFIFTFIFIFIFIF
mov r9, @x888080808030B80880

align 8

e Data section B[oot st
o Contains data that is constant once initialised
o Cannot be changed during execution

e BSS section

o Used for declaring variables during execution

Uninitialized jr initialized to zero
. by exec
o Dynamic, can be changed
e
data program file by

exec

e Text section
o The assembly to execute

O OO s WN PR

10
kil
12
ake
14
iks)
16
k74
18
19
20
20
22
23
24
25
26
27,
28
29
30
39
32
33

Layout in FASM

I"hello, world" in assembly language for Linux

’

;to build an executable:
s fasm hello.asm

; Output a 64-bit ELF binary
format ELF64 executable

; The .data section of the ELF
segment readable writable

; msg is a label, pointing to the first char of our string (with Oxa, a newline, appended)
msg db 'Hello, world!',OxA

; len is a constant label (defined via =) that takes the current address and subtracts the
; address of the msg label. This gives the byte-length of the string

len = $-msg

; The .text section, or code section of the ELF
segment readable executable
; Mark the current address as the executable's entry-point

entry $
; Write the
mov rax,1
mov rdi,1

mov rsi,msg ;
mov rdx,len ;

syscall

string to stdout:

’
’
’
’

’

; system call number (sys_write)
; file descriptor (stdout)

message to write
message length
call kernel

; Exit via the kernel:

mov xdi, O

; process's exit code

mov rax,60 ; system call number (sys_exit)

syscall

; call kernel - this interrupt won't retuxrn

What is the stack, and heap?

The stack grows down in memory
The heap grows up in memory
Stack frames

o Growing the stack
o Restoring the stack

What is the difference between a
STACK & A HEAP?

OxFFFFFFFF

SAVED EBFP

G 1

0x00000000

cmp[bwgl] srcl, src2
— Compares src2 to srcl (e.g. src2 < srcl, src2 == srcl)

— Performs (src2 - srcl)and sets the condition codes
31302928272625242322212019181716151413121110 9 8 7 6 54 3 2 1 0
| based on the result
VIV
°°°°°°°°°°5;;é¥.§°'¥ o [BIRIF[FIELE Lol £l || 1 |§ — srcl & src2 is not changed (subtraction result is only used for
L condition codes and then discarded)

X| 1D Flag (ID) |\ * test[bwgl] srcl, src2

X| Virtual Interrupt Pending (VIP) .

X |Virtual Interrupt Flag (VIF) — Performs (srcl & src2) and sets condition codes

X |Alignment Check / Access Control (AC) — src2 is not changed

X |Virtual-8086 Mode (VM)]]

X | Resume Flag (RF) — Often used with the srcl =src2 (i.e. test %eax, %eax)to

i yg%:eilgiké:\z (10PL) check if a value is 0 or negative

E Overflow Flag (OF) jmp label
LC | Direction Flag (DF) jmp *(Operand)

X |Interrupt Enable Flag (IF) je label jz ZF Equal / zero

| X | Trap Flag (TF) . -

S | sign Flag (SF) jne label jnz ~ZF Not equal / not zero

S | Zero Flag (ZF) label SF Negative

2 S::il(hagaca(g};;:'ag (AF) label ~SF Non-negative

S Carr))(lFlag (CF) jg label jnle ~(SF ~ OF) & ~ZF Greater (signed >)

- jge label jnl ~(SF ~ OF) Greater or Equal (signed >=)
Indi Fl . . .

CSI I?)g:‘;izz : 2'::::0‘ Falgg jl 1label jnge (SF ~ OF) Less (signed <)

X Indicates a System Flag IA-32 32-Bit EFLAGS Register jle label jng (SF ~ OF) | ZF Less of equal (signed <=)
Reserved bit positions. DO NOT USE ja label jnbe ~CF & ~ZF Above (unsigned >)
Always set to values previously read. jae label jnb ~CF Above or equal (unsigned >=)

jb label jnae CF Below (unsigned <)

jbe label jna CF | zF Below or equal (unsigned <=)

Register

$rbx
$rex
$rdx

$rsp
$rbp

$rsi

$rdi
%r8
%r9
%$rl0

$rll
$r12-rlS
$xmmO0-%xmml

$xmm2
$xmm8-%
$mmx0
$st0

$stl

¥st2-%st7
%fs

temporary register; with variable ar-
guments passes information about the
number of SSE registers used; 1** re-
turn register

callee-saved register; optionally used
as base pointer

used to pass 4'” integer argument to
functions

used to pass 3™ argument to func-
tions; 2" return register

stack pointer

callee-saved register; optionally used
as frame pointer

used to pass 2" argument to func-
tions

used to pass 1% argument to functions
used to pass 5*" argument to functions
used to pass 6'" argument to functions
temporary register, used for passing a
function’s static chain pointer
temporary register

callee-saved registers

used to pass and return floating point
arguments

used to pass floating point arguments
temporary registers

temporary registers

temporary register; used to return
long double arguments
temporary registers; used to return
long double arguments
temporary registers

Reserved for system use (as thread
specific data register)

Preserved across
function calls

rax,1l
rdi,1
rsi,msg
rdx, len

%rdi

unsigned int fd

Entry point

sys_write

%rsi

const char __user * buf

Implementation

fs/read write.c

%rdx

size_t count

https://filippo.io/linux-syscall-table/

Registers

Register Lower byte Lower word Lower dword

Registers are a very small location in the CPU that can store and access
values very quickly.
o Very similar to RAM, but a lot faster to access

They are used to store values while the processor is executing instructions

Each general-purpose register is 64 bits wide
o Each 1,2, 4 and 8 bytes can be accessed individually

There are other more specialised registers such as the register

General-Purpose Registers

64-bit 32-bit 16-bit 8 high bits of lower 16 bits 8-bit Description

RAX EAX AX AH AL Accumulator

RBX EBX BX BH BL Base index (for use with arrays) x86 & x86-64
RCX ECX CX CH CcL Counter for loops and strings x86-64 only
RDX EDX DX DH DL Data (commonly extends the A register)

RSI ESI Sl N/A SIL Source index for string operations

RDI EDI DI N/A DIL Destination index for string operations

RSP ESP SP N/A SPL Stack Pointer

RBP EBP BP N/A BPL Base Pointer (meant for stack frames)

R8.. R15 R8D..R15D R8W..R15W N/A R8B..R15B General purpose registers 8 to 15

Instruction pointer register

(@)

Special Registers

64-bit

32-bit

16-bit

Description

RIP

Contains the location of the next instruction

EIP

Instruction Pointer

R/E/FLAGS register contains the current state of the CPU
Contains useful flags such as Zero, Overflow, Parity, Carry and I/0 Privilege level flags

@)

(@)

Control registers CRO to CR7
CRO contains controls for paging, write protections and other things relating to memory

o

(@)

(@)

CR3 is used for virtual addressing

CR4 is used when in protected mode (stops apps writing over each other)

X86 & x86-64

x86-64 only

https://en.wikipedia.org/wiki/FLAGS_register

Memory and Addresses

e Memory (or RAM) is a collection of numbered ‘cells’ that are 8 bits in size (1 byte)
o For example, in the image below you can see the cell 7FF62ECFC128 stores hex 40

e We can access multiple bytes at a time:
o mov rdi, myNum ; pointer to long
mov rax, QWORD [rdi+8] ; read *next* long from memory
ret

myNum:
dq 117 ; puts one QWORD in memory [myNur] ,
dg 42 ;puts another QWORD in memory [myNu o

e Windows (and Linux?) have address spaces that are assigned to applications
o This stops applications overwriting or viewing each others data

0x12345678

e Little Endian and Big Endian are simply two ways of representing data Little Endian

e Operand1: Big Endian
o AND OpT, Op2 #0p1-=
o OR OpT, Op2 #0p 1=
o XOR Op1, Op2 #0p1-=
o NOT Op1 #0p 1=
o SAR Op1, 3 #0p 1= Logical shift Right by 3
o SAL Op1, 3 #0p1-= Logical shift Left by 3

Pointers

e Pointers are a variable that stores the address of another variable

e Really useful for referencing large areas of data
o We can have a ‘base’ address, and then reference the data with an offset
o Last slide shows this, look at ‘myNum’

e In assembly, we can reference pointers like so:

o mov by, [rsp] # Take the value from the address stored in rsp and store it in rbx
m rsp=0000021163C3C690
m 0000021163C3C690 = FFFFFFFFFFFFFFFF
m Sorbx would contain FFFFFFFFFFFFFFFF

o mov [rsp], rbx # Take value in rbx and store in the memory address stored in rsp
m rbx = FFFFFFFFFFFFFFFF
m rsp=0000021163C3C690
m So memory address 21163C3C690 would contain FFFFFFFFFFFFFFFF

More Pointers

—»{12[o} >{09] &} »{37[e | >

node node.next node.next.next

—»12|¢| |ov | [37] &>

node 1.ode.net node.next.next

Student
Hackers

Breaking into security.

E Ethical

Demos

T

ime!

<stdio.h>
void main{) {
char operator;
double a,b;
printf("Enter an operator (+,
scanf("%c", &operator);
printf("Enter two numbers ");
scanf("%1f %1f",&a, &b);
(operator)
"+
printf("%.11f + %.11f

3

printf("%.11f - %.11f
e
printf("%.11f * %.11f
B
it
printf("%.11f /7 %.11f

3

— Sl

printf("Error! operator

%.11f",a, b, a +

%.11¥",a, b, a -

%.11¥",a, b, a *

%.11¥",a, b, a /

is not correct");

b);

b);

b);

b);

Miscellaneous Resources

https://www.youtube.com/watch?v=DNPjBvZxE3E

https://sensepost.com/blogstatic/2014/01/SensePost_crash_course_in_x86_assembly-.pdf

http://www.cs.unc.edu/~porter/courses/cse306/s13/slides/x86-assembly-handout.pdf

https://blog.adafruit.com/2019/04/10/a-crash-course-in-x86-assembly-for-reverse-engineers-assembly-reverseengineering/

http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/x86.pdf

https://jakash3.wordpress.com/2010/04/24/x86-assembly-a-crash-course-tutorial-i/

https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf

https://trailofbits.qgithub.io/ctf/vulnerabilities/references/X86_Win32_Reverse_Engineering_Cheat_Sheet.pdf

https://bitvijays.qgithub.io/LFC-BinaryExploitation.html

https://opensource.com/article/20/4/linux-binary-analysis

https://github.com/slimm609/checksec.sh

https://cutter.re/

https://montcs.bloomu.edu/Information/LowlL evel/Assembly/hello-asm.html#helloLinux

https://www.youtube.com/watch?v=NcaiHcBvDR4

https://filippo.io/linux-syscall-table/

https://www.youtube.com/watch?v=DNPjBvZxE3E
https://sensepost.com/blogstatic/2014/01/SensePost_crash_course_in_x86_assembly-.pdf
http://www.cs.unc.edu/~porter/courses/cse306/s13/slides/x86-assembly-handout.pdf
https://blog.adafruit.com/2019/04/10/a-crash-course-in-x86-assembly-for-reverse-engineers-assembly-reverseengineering/
http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/x86.pdf
https://jakash3.wordpress.com/2010/04/24/x86-assembly-a-crash-course-tutorial-i/
https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf
https://trailofbits.github.io/ctf/vulnerabilities/references/X86_Win32_Reverse_Engineering_Cheat_Sheet.pdf
https://bitvijays.github.io/LFC-BinaryExploitation.html
https://opensource.com/article/20/4/linux-binary-analysis
https://github.com/slimm609/checksec.sh
https://cutter.re/
https://montcs.bloomu.edu/Information/LowLevel/Assembly/hello-asm.html#helloLinux
https://www.youtube.com/watch?v=NcaiHcBvDR4
https://filippo.io/linux-syscall-table/

Upcoming e
S e S S i 0 n S 8th March: Making a CTF

What's up next? 15th March: Web App Hacking

www.shefesh.com/sessions

Any Questions?

www.shefesh.com
Thanks for coming!

