
Ethical Student Hackers
Intro to Assembly

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in

systems. We strive to give you a place to practice legally, and can point you to other places to

practice. These skills should not be used on systems where you do not have explicit permission

from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can

accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not

authorised you will be banned from our events, and if necessary the relevant authorities will be

alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you

are able to confirm you are allowed to.

The Legal Bit

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a

requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at

https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct

What is assembly?

● Assembly is a human readable version of machine-code that is as close as you can get to the

“bare metal”

● Every processor architecture has its own assembly language – some common ones:

○ x86 (The one we are learning today)

○ ARM (In mobile devices and the new Macbooks)

○ RISC-V (A neat, newish open-source architecture)

● Though different architectures have different instructions and registers, many of the

concepts are the same

● If you’d like to see a very basic (and quite fictional) assembly language, check out TIS-100!

https://www.zachtronics.com/tis-100/

● Low level development

○ At the level of operating systems and bootloaders, this is sometimes the only language

available!

○ These layers of the stack can often hide hard-to-find security vulnerabilities!

● Near-direct translation of machine-code

○ Binary programs can be disassembled and reverse-engineered

● An understanding at this level helps understand concepts in other languages

○ Systems-programming languages like C/C++ and Rust have some overlap

○ Higher level languages like Python are much farther from this level though

Why is it useful to know assembly?

Some basic syntax

● Data section

○ Contains data that is constant once initialised

○ Cannot be changed during execution

● BSS section

○ Used for declaring variables during execution

○ Dynamic, can be changed

● Text section

○ The assembly to execute

Layout of assembly

Layout in FASM

● What is the stack, and heap?

● The stack grows down in memory

● The heap grows up in memory

● Stack frames

○ Growing the stack

○ Restoring the stack

The Stack (Maybe Some Heap Too)

Control Flow

System Calls

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

● Registers are a very small location in the CPU that can store and access

values very quickly.

○ Very similar to RAM, but a lot faster to access

● They are used to store values while the processor is executing instructions

● Each general-purpose register is 64 bits wide

○ Each 1, 2, 4 and 8 bytes can be accessed individually

● There are other more specialised registers such as the RFLAGS register

Registers

General-Purpose Registers

64-bit 32-bit 16-bit 8 high bits of lower 16 bits 8-bit Description

RAX EAX AX AH AL Accumulator

RBX EBX BX BH BL Base index (for use with arrays)

RCX ECX CX CH CL Counter for loops and strings

RDX EDX DX DH DL Data (commonly extends the A register)

RSI ESI SI N/A SIL Source index for string operations

RDI EDI DI N/A DIL Destination index for string operations

RSP ESP SP N/A SPL Stack Pointer

RBP EBP BP N/A BPL Base Pointer (meant for stack frames)

R8.. R15 R8D..R15D R8W..R15W N/A R8B..R15B General purpose registers 8 to 15

x86 & x86-64

x86-64 only

● Instruction pointer register

○ Contains the location of the next instruction

● R/E/FLAGS register contains the current state of the CPU

○ Contains useful flags such as Zero, Overflow, Parity, Carry and I/O Privilege level flags

○ https://en.wikipedia.org/wiki/FLAGS_register

● Control registers CR0 to CR7

○ CR0 contains controls for paging, write protections and other things relating to memory

○ CR3 is used for virtual addressing

○ CR4 is used when in protected mode (stops apps writing over each other)

Special Registers

64-bit 32-bit 16-bit Description

RIP EIP IP Instruction Pointer

x86 & x86-64

x86-64 only

https://en.wikipedia.org/wiki/FLAGS_register

● Memory (or RAM) is a collection of numbered ‘cells’ that are 8 bits in size (1 byte)

○ For example, in the image below you can see the cell 7FF62ECFC128 stores hex 40

● We can access multiple bytes at a time:

○ mov rdi, myNum ; pointer to long

mov rax, QWORD [rdi+8] ; read *next* long from memory

ret

myNum:

dq 117 ; puts one QWORD in memory [myNum+0]

dq 42 ; puts another QWORD in memory [myNum+8]

● Windows (and Linux?) have address spaces that are assigned to applications

○ This stops applications overwriting or viewing each others data

Memory and Addresses

● Little Endian and Big Endian are simply two ways of representing data

● Operand 1: 0101 1010

Operand 2: 0011 1001

○ AND Op1, Op2 # Op 1 = 0001 0000

○ OR Op1, Op2 # Op 1 = 0111 1011

○ XOR Op1, Op2 # Op 1 = 0110 0011

○ NOT Op1 # Op 1 = 1010 0101

○ SAR Op1, 3 # Op 1 = 0000 1011 Logical shift Right by 3

○ SAL Op1, 3 # Op 1 = 1101 0000 Logical shift Left by 3

Endianness & Bitwise Operations

● Pointers are a variable that stores the address of another variable

● Really useful for referencing large areas of data

○ We can have a ‘base’ address, and then reference the data with an offset

○ Last slide shows this, look at ‘myNum’

● In assembly, we can reference pointers like so:

○ mov rbx, [rsp] # Take the value from the address stored in rsp and store it in rbx

■ rsp = 0000021163C3C690

■ 0000021163C3C690 = FFFFFFFFFFFFFFFF

■ So rbx would contain FFFFFFFFFFFFFFFF

○ mov [rsp], rbx # Take value in rbx and store in the memory address stored in rsp

■ rbx = FFFFFFFFFFFFFFFF

■ rsp = 0000021163C3C690

■ So memory address 21163C3C690 would contain FFFFFFFFFFFFFFFF

Pointers

More Pointers

Demos Time!

● https://www.youtube.com/watch?v=DNPjBvZxE3E

● https://sensepost.com/blogstatic/2014/01/SensePost_crash_course_in_x86_assembly-.pdf

● http://www.cs.unc.edu/~porter/courses/cse306/s13/slides/x86-assembly-handout.pdf

● https://blog.adafruit.com/2019/04/10/a-crash-course-in-x86-assembly-for-reverse-engineers-assembly-reverseengineering/

● http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/x86.pdf

● https://jakash3.wordpress.com/2010/04/24/x86-assembly-a-crash-course-tutorial-i/

● https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf

● https://trailofbits.github.io/ctf/vulnerabilities/references/X86_Win32_Reverse_Engineering_Cheat_Sheet.pdf

● https://bitvijays.github.io/LFC-BinaryExploitation.html

● https://opensource.com/article/20/4/linux-binary-analysis

● https://github.com/slimm609/checksec.sh

● https://cutter.re/

● https://montcs.bloomu.edu/Information/LowLevel/Assembly/hello-asm.html#helloLinux

● https://www.youtube.com/watch?v=NcaiHcBvDR4

● https://filippo.io/linux-syscall-table/

Miscellaneous Resources

https://www.youtube.com/watch?v=DNPjBvZxE3E
https://sensepost.com/blogstatic/2014/01/SensePost_crash_course_in_x86_assembly-.pdf
http://www.cs.unc.edu/~porter/courses/cse306/s13/slides/x86-assembly-handout.pdf
https://blog.adafruit.com/2019/04/10/a-crash-course-in-x86-assembly-for-reverse-engineers-assembly-reverseengineering/
http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/x86.pdf
https://jakash3.wordpress.com/2010/04/24/x86-assembly-a-crash-course-tutorial-i/
https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf
https://trailofbits.github.io/ctf/vulnerabilities/references/X86_Win32_Reverse_Engineering_Cheat_Sheet.pdf
https://bitvijays.github.io/LFC-BinaryExploitation.html
https://opensource.com/article/20/4/linux-binary-analysis
https://github.com/slimm609/checksec.sh
https://cutter.re/
https://montcs.bloomu.edu/Information/LowLevel/Assembly/hello-asm.html#helloLinux
https://www.youtube.com/watch?v=NcaiHcBvDR4
https://filippo.io/linux-syscall-table/

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

1st March: Game Hacking

8th March: Making a CTF

15th March: Web App Hacking

Any Questions?

www.shefesh.com
Thanks for coming!

